

ii

KDE Frameworks Cookbook

The KDE Developers

Contents

1 Introduction to KF5 1

1.1 What are Frameworks? . 1

1.2 History . 2

2 KArchive 3

2.1 Show me the code . 3

2.2 Sending compressed data over networks . 4

3 Kauth 5

3.1 Introduction to Authorization . 5

3.2 What is KAuth . 5

3.3 Concepts . 5

3.4 Phases breakdown . 6

3.5 Creating Actions with KAuth . 8

3.6 The Domain field . 9

3.7 CMake macros and file format . 9

4 Introduction to KConfig 10

4.1 Design Essentials . 10

4.2 The KConfig Class . 11

4.3 Special Configuration Objects . 11

4.4 KSharedConfig . 13

4.5 KConfigGroup . 13

4.6 Reading Entries . 13

4.7 Writing Entries . 14

4.8 KDesktopFile: A Special Case . 14

4.9 KConfig XT . 14

ii

CONTENTS iii

5 Ki18n: Reaching a wider audience 15

5.1 Writing Messages . 15

5.2 General Messages . 15

5.3 Specialized Messages . 17

5.4 Placeholder Substitution . 19

6 KIdleTime: Detect and Handle System Idling 20

6.1 Using Kidletime . 20

7 KItemModels 22

7.1 KBreadcrumbSelectionModel . 22

7.2 KCheckableProxyModel . 22

7.3 KDescendantsProxyModel . 22

7.4 KLinkItemSelectionModel . 22

7.5 KModelIndexProxyMapper . 23

7.6 KRecursiveFilterProxyModel . 23

7.7 KSelectionProxyModel . 23

8 Sonnet: Spellchecking made easy 24

8.1 Spellchecking in your QTextEdit . 24

8.2 Language Detection in Sonnet . 25

8.3 GUI Widgets provided by Sonnet . 25

9 Concurrent programming using the ThreadWeaver framework 26

9.1 HelW olorld! . 26

9.2 Adding ThreadWeaver to a project - an introduction to the Frameworks 5
build system . 28

10 Creating a new application 30

10.1Starting a new application from a template 30

10.2Walking through the skeleton . 32

10.2.1main.cpp . 32

10.2.2BrightFuture . 33

10.3Plotting the future . 34

10.4Configuring the color . 35

10.4.1Enabling KConfig . 35

iv CONTENTS

10.4.2Adding the capability to plot in different colors 36

10.4.3Writing the configuration . 36

10.4.4Reading the configuration . 38

Chapter 1

Introduction to KF5

1.1 What are Frameworks?

KDE Frameworks 5 are a set of cross platform solutions that extend the functionality Qt
offers. They are designed as drop-in Qt Addon libraries, enrich Qt as a development envi-
ronment with functions that simplify, accelerate and reduce the cost of Qt development.
Frameworks eliminate the need to reinvent key functionalities.

All frameworks come with quality promises, are developed in an open and welcoming
environment, and are licensed under the Lesser Gnu Public License. By having each
framework tailored to a specific use case, a framework can bring you the feature you
need with a minimum of additional libraries.

Frameworks 5 consists of functional components and are structured in ‘tiers’ and ‘cate-
gories’. The tiers give a structure for link-time dependencies. Tier 1 Frameworks can be
used independently, while Tier 3 Frameworks can depend on other Tier 3 Frameworks
and tiers below them. The catagories give information about the run-time dependencies,
and are divided into the following three catagories:

• Functional frameworks have no runtime dependencies. For example, KArchive
handles compression and decompression for many archive formats transparently
and can be used as a drop-in library.

• Integration designates code that requires runtime dependencies for integration
depending on what the OS or platform offers. For example, Solid supplies informa-
tion on available hardware features and may require runtime components to deliver
some of the data on some platforms.

• Solutions have mandatory runtime dependencies. For example, KIO (KDE In-
put/Output) offers a network-transparent virtual filesystem that lets users browse
and edit files as if they were local, no matter where they are physically stored. And
KIO requires kioslave daemons to function.

The Frameworks are also separated by respecting core/gui distinctions and the different
GUI technologies. So it is not uncommon to find a core, a gui and a widget module

1

2 CHAPTER 1. INTRODUCTION TO KF5

relating to a given Framework (e.g KConfigCore vs KConfigGui). This way third parties
can use only the parts they need and avoid pulling unwanted dependencies on QtGui.

1.2 History

For over 15 years, the KDE libraries formed the common code base for (almost) all KDE
applications. They provided a high-level functionality such as toolbars and menus, spell
checking and file access. In that time ‘kdelibs’ was released and distributed as a single
set of interconnected libraries. Through the KDE Frameworks efforts, these libraries
have been methodically reworked into a set of independent, cross platform classes that
now are available to all Qt developers.

The journey started at the Randa Meetings back in 2011, where porting KDE Platform
4 to Qt 5 was initiated. But as part of this effort, modularizing of libraries, integrating
portions properly into Qt 5 and modularizing was begun. Three years later, Frameworks
5 was released. Today you can save yourself the time and effort of repeating work that
others have done, relying on over 50 Frameworks with mature, well tested code.

Chapter 2

KArchive

When you are storing large amounts of data, how do you archive it in an easy way from
within your code? The KArchive framework provides a quick and easy way to do this
from within Qt apps.

While Qt5 provides the QZipWriter and QZipReader classes, these are limited only to
Zips. KArchive on the other hand supports a wide array of formats such as p7zip, tar
and ar archives, giving you the flexibility of choosing the formats which fit your project.

2.1 Show me the code

Here’s a simple ‘Hello World’ example of KArchive.

1 // Create a z ip archive
2 KZip archive (QSt r i ngL i te ra l (” hel lo . z ip ”)) ;
3

4 // Open our archive fo r wr i t ing
5 i f (archive .open(QIODevice : : WriteOnly)) {
6 // The archive i s open, we can now wr i te data
7 archive . w r i t e F i l e (QS t r i ngL i te ra l (”world”) , // F i l e name
8 QByteArray (”The world ins ide a hel lo . ”) , // Data
9 0100644 , // Permiss ions

10 QSt r i ngL i te ra l (”owner”) , // Owner
11 QSt r i ngL i te ra l (” users ”)) ; // Group
12

13 // Don’ t forget to close !
14 archive . close () ;
15 }
16

17 i f (archive .open(QIODevice : : ReadOnly)) {
18 const KArchiveDirectory * d i r = archive . di rectory () ;
19

20 const KArchiveEntry *e = di r −>entry (”world”) ;
21 i f (! e) {
22 qDebug() << ” F i l e not found ! ” ;
23 return −1;
24 }

3

4 CHAPTER 2. KARCHIVE

25 const KArchiveFi le * f = s tat ic cast<const KArchiveFi le *>(e) ;
26 QByteArray ar r (f −>data ()) ;
27 qDebug() << ar r ; // the f i l e contents
28

29 // To avoid reading everything into memory in one go,
30 // we can use createDevice () instead
31 QIODevice *dev = f −>createDevice () ;
32 while (! dev−>atEnd ()) {
33 qDebug() << dev−>readLine () ;
34 }
35 delete dev ;
36 }

More files can be added by subsequent calls to writeFile(). You also add folders to your
zip by using the writeDir call as follows :

archive writeDir (QStringLiteral("world dir‘‘));

Full API docs can be found here.

2.2 Sending compressed data over networks

KArchive also supports reading and writing compressed data to devices such as buffers
or sockets via the KCompressionDevice class allowing developers to save bandwidth
while transmitting data over networks.

A quick example of the KCompressionDevice class can be summed up as:

1 // Open the input archive
2 KCompressionDevice input(& f i l e , fa lse , KCompressionDevice : : BZip2) ;
3 input .open(QIODevice : : ReadOnly) ;
4

5 QString outputF i le = (in fo .completeBaseName() + QLat in1Str ing (” . gz”)) ;
6

7 // Open the new output f i l e
8 KCompressionDevice output (outputF i le , KCompressionDevice : : GZip) ;
9 output .open(QIODevice : : WriteOnly) ;

10

11 while (! input . atEnd ()) {
12 // Read and uncompress the data
13 QByteArray data = input . read (512) ;
14

15 // Write data l i k e you would to any other QIODevice
16 output . wr i te (data) ;
17 }
18

19 input . close () ;
20 output . close () ;

ttps://api.kde.org/frameworks/karchive/html/index.html

Chapter 3

Kauth

3.1 Introduction to Authorization

When writing an application occasionally we want to access actions that require admin-
istrator access. This could include writing some configuration files that are owned by
root, editing the system clock or other administrative tasks.

The obvious solution is to run the entire application as root, but this exposes a lot of
potential security problems to the user. We want a way to run the main application as
the normal user, yet still be able to authenticate and and run small parts as root or
another user.

3.2 What is KAuth

KAuth is an authentication framework, that acts as a wrapper around lower-level li-
braries and tools. If you are planning to use KAuth, however, you won’t have to care
about what authentication system is the system you are targeting using: KAuth will
take care of that on its own.

In addition, KAuth is also able to perform privilege elevation on restricted portions of
code (helpers), giving the developer an efficient and easy to use pipe to communicate
with them, and making them secure throughout authorization.

3.3 Concepts

There are a few concepts to understand when using KAuth. Much of those are carried
from underlying APIs such as polkit, so if you are familiar with one of them you might
as well skip this section.

• The ‘authorization system’ is an underlying framework (like polkit or Authorization
Services), which KAuth interfaces with. KAuth’s aim is to never make the developer

5

6 CHAPTER 3. KAUTH

know or care about the underlying authorization system, however in this tutorial
series this concept will come up quite often to explain better how KAuth works.

• An ‘’action” is a single task that needs authorization to be performed. Each ac-
tion has an unique action identifier, which is a string in reverse domain name
syntax, like ‘’org.kde.this.is.an.action”. For example, if our example application
needs to read a file the user has no privileges on, it would need an action like
“org.kde.auth.xmpl.read”. Please note that each action has to refer to a single
task: this allows system administrators to fine tune the policies that allow users to
perform your actions, and also a more secure way of locking down the privileged
actions in your application.

• An ‘’action namespace” is the first part of the action identifier. In the command
“org.kde.auth.xmpl.read”, ‘’org.kde.auth.example” is the action namespace, ‘’read”
is the action name. This is a very important concept when dealing with helpers
and .actions files.

• ‘’Authorization” is a particular phase where the underlying authorization system
performs the needed checks (and eventually asks the user its credentials in order
to authorize him). Before any action is executed, the Authorization phase takes
place. This is handled internally by KAuth: even if you are able to trigger this
phase manually, most of the times you don’t need to: KAuth will still execute an
action only if the underlying authorization system allows its execution.

• ‘’Authentication”is an optional phase that takes place during authorization, if the
policy for the action requests the user to input a credential to give him an explicit
authorization. This phase is external and not handled by KAuth, but entirely by
the underlying authorization system. It is, however, important for you to know
something about it even if KAuth has no way to hijack the Authentication phase by
design.

• ‘’Execution” happens only if the Authorization was successful: the execution might
consist in a simple confirmation of the successful authorization, or eventually in
the execution of a function in an helper.

• An ‘’Helper”is a separate application running as a privileged user (usually root),
which is called upon execution if your action was attached to an helper. KAuth
uses a completely transparent approach: IPC between your application and the
helper itself is handled internally through an extremely simple API, and you won’t
even know that the helper is a separate application: spawning, killing and all the
process handling is handled by KAuth.

3.4 Phases breakdown

Supposing that you want to use KAuth to perform a privileged operation and the action
you are considering requires the user to authenticate (which is the most common use
case of KAuth), the break down of phases would be:

• The user wants to perform some privileged task.

3.4. PHASES BREAKDOWN 7

• The application creates an action for the task in question.

• The action is requested to be executed.

• The following steps are handed internally, either by KAuth or the underlying au-
thorization system.

• Authorization phase begins

• The system detects that the user needs to authenticate to authorize the action.

• Authentication phase begins

• The user is requested to input his password, swipe his finger, press a button. . .

• Authentication phase ends

• If authentication was unsuccessful, the action is rejected.

• Otherwise, the system grants an explicit authorization to the user.

• Authorization phase ends

• If authorization was unsuccessful, the action is rejected.

• Otherwise, the action is executed.

• Execution phase begins

• A separate application is spawned by root, and the requested portion of code is
executed.

• The helper code, immediately after starting, checks the authorization again to im-
prove security, and also because some authorization systems delay the authoriza-
tion phase in the beginning of the execution phase. If the helper is not authorized,
the execution is aborted.

• If the caller is authorized, the helper executes the task.

• Execution phase ends

• The application receives the result of the execution from the helper.

This is how, concept-proof, KAuth works. However, please note that in your implemen-
tation you will have to deal with the pre-authorization phase only, since everything else
is handled internally.

8 CHAPTER 3. KAUTH

3.5 Creating Actions with KAuth

To increase the level of security, authorization systems require to register the actions
together with the application installation, so that the authorized actions are all known
to the system administrator. This means that if you’re using KAuth you probably want
to register some new actions in the system.

Many authorization systems are quite strict about action naming, hence staying com-
patible with all of them is a tricky task. To ensure maximum compatibility with all of
them, in both action namespaces and action names, use only lowercase letters and
numbers. Here comes a small example:

• ‘’org.kde.auth.xmpl.read” OK

• ‘’org.KDE.auth.xmpl.read” NOT OK

• ‘’org.kde.auth.xmpl-1.read” NOT OK

• ‘’org.kde.auth.xmpl.readFile” NOT OK

• ‘’org.kde.auth.xmpl.readfile” OK

This is done by creating a ’‘.actions” file, which is a standard INI files containing a set of
new actions. This file is translatable, and if you’re developing your project in KDE git,
scripty will take care of updating it.

Each .actions file can contain an unlimited set of actions, provided that they belong to
the same action namespace. This is extremely important.

The file has the following format:

[org.kde.auth.example.action]
Name=Example action
Description=The system is attempting to perform the example action
Policy=auth admin
Persistence=session

The fields are defined as follows:

• Title: The action identifier

• Name: A human readable action name

• Description: This message will eventually be displayed to the user during the
authentication phase, if any.

• Policy: The default policy for this action. It can be one of the following values:
‘’yes’‘: the action should be allowed without requesting authentication ’ ’no’ ’: the
action should be always denied, without requesting authentication ’‘auth self”: the
action will be authorized if the user will authenticate as himself ’‘auth admin”: the
action will be authorized if the user will authenticate as a system administrator

3.6. THE DOMAIN FIELD 9

• Persistence: this field is optional and takes effect only if the authorization system
supports it and Policy is either ‘’auth admin” or ‘’auth self’‘. It defines the persis-
tence of the explicit authorization granted by the user through authentication. It
can be one of the following values: ’ ’session’ ’: the authorization persists until the
user logs out ’‘always”: the authorization will persist indefinitely

3.6 The Domain field

.actions files can have a special group, [Domain], under which you can give out some
more information about the action namespace you’re defining. This is how it looks (all
fields are optional):

[Domain] Name=The KAuth example series
Icon=kauth-example
URL=http://techbase.kde.org/

The fields are defined as follows:

• Name: Usually the name defining the application which is going to use this names-
pace

• Icon: An icon name, that will be shared among all the actions

• URL: Home page of your organization

3.7 CMake macros and file format

Once you defined the actions in your file (remember you can define an unlimited num-
ber of actions in an .actions file, provided that they all belong to the same names-
pace, for example org.kde.auth.example.*), KAuth provides a CMake macro to register
the actions in the system. From your CMakeLists.txt, supposing your file is named
org.kde.auth.example.actions, you would do:

kauth install actions(org.kde.auth.example org.kde.auth.example.actions)

This macro has the following syntax:

kauth install helper files(<namespace id> <actions definition file>)

Where namespace id is the namespace where you defined your actions, in this case
org.kde.auth.example.

Chapter 4

Introduction to KConfig

This is based on the KConfig tutorial on Techbase

This tutorial looks at the KDE configuration data system, starting with an overview of
the design fundamentals from an application developer’s point of view. It then looks at
the classes relevant to application development one by one.

4.1 Design Essentials

KConfig is designed to abstract away the concept of actual storage and retrieval of con-
figuration settings behind an API that allows easy fetching and setting of information.
Where and in what format the data is stored is not relevant to an application using
KConfig. Using Kconfig keeps all KDE applications consistent in their handling of con-
figurations while sparing application authors from the work of building such a system
on their own. This eliminates many errors.

A KConfig object represents a single configuration object. Each configuration object is
referenced by its unique name and may be actually read from multiple local or remote
files or services. Each application has a default configuration object associated with it
and there is also a global configuration object.

These configuration objects are broken down into a two level hierarchy: groups and
keys. A configuration object can have any number of groups and each group can have
one or more keys with associated values.

Values stored may be of any number of data types. They are stored and retrieved as the
objects themselves. For example, a QColor object is passed to a config object directly
when storing a color value and when retrieved a QColor object is returned. Applications
themselves therefore generally do not have to perform serialization and deserialization
of objects themselves.

10

https://techbase.kde.org/Development/Tutorials/KConfig

4.2. THE KCONFIG CLASS 11

4.2 The KConfig Class

The KConfig object is used to access a given configuration object. There are a number
of ways to create a config object:

1 // An example of a KConfig object
2 // a plain old read/ wr i te config object
3 KConfig config (”myapprc”) ;
4

5 // a speci f ic f i l e in the f i le sys tem
6 // cur rent ly must be an I N I s t y l e f i l e
7 KConfig f u l l P a t h (” /etc/kderc”) ;
8

9 // not merged with global values
10 KConfig globalFree (” locals rc ” , KConfig : : NoGlobals) ;
11

12 // not merged with globals or the $KDEDIRS hierarchy
13 KConfig simpleConfig (” simplerc ” , KConfig : : SimpleConfig) ;

The KConfig object created on line 3 is a regular config object. We can read values from
it, write new entries and ask for various properties of the object. This object will be
loaded from the config resource as determined by QStandardPaths, meaning that every
instance of the myapprc object in each of the directories in the config resource hierarchy
will be merged to create the values seen in this object. This is how system wide and
per-user/group profiles are generated and supported and it all happens transparently
to the application itself.

The hierarchy of directories searched for configuration is defined by $XDG CONFIG DIRS,
which is defined in the XDG Base Directory Specification. Qt supports this specification
in QStandardPaths.

On line 7 we open a specific local file, this case /etc/kderc. This performs no merging
of values and expects an INI style file.

Line 10 sees the creation of a configuration object that is not merged with the user
global configuration object, while the configuration file on line 13 is additionally not
merged with any files in the $XDG CONFIG DIRS hierarchy. This can noticeably improve
performance in the case where one is simply reading values out of a simple configuration
for which global values are not meaningful.

4.3 Special Configuration Objects

Each application has its own configuration object. This object uses the name provided to
KAboutData with “rc” appended as its name. So an app named myapp would have the de-
fault configuration object of myapprc (located in $XDG CONFIG HOME, which is ˜/.config
by default). This configuration file can be retrieved in this way:

http://standards.freedesktop.org/basedir-sgeneralGroup.writeEntry("Account", accountName); generalGroup.writePathEntry("SaveTo", savePath); colorGroup.writeEntry("background", color); generalGroup.config()->sync();pec/basedir-spec-latest.html

12 CHAPTER 4. INTRODUCTION TO KCONFIG

1 #include <KSharedConfig>
2

3 MyClass : : MyClass ()
4 {
5 KSharedConfig : : P t r config = KSharedConfig : : openConfig () ;
6 }

This actually uses KSharedConfig, which is a ref-counted shared KConfig object. More
about that in a later section.

The default configuration object for the application is accessed when no name is specified
when creating a KConfig object. So we could also do this instead, but it would be slower
because it would have to parse the whole file again:

1 #include <KConfig>
2

3 MyClass : : MyClass ()
4 {
5 KConfig config ;
6 }
7 \end { l s t l i s t i n g }
8

9 \ section{Commonly Usefu l Methods}
10

11 To save the current state of the configuration object we ca l l the
12 \ t e x t t t {sync ()} method. T h i s method i s also called when the object i s
13 destroyed . I f no changes have been made or the resource reports i t s e l f
14 as non−writable (such as in the case of the user not having wr i te
15 permiss ions to the f i l e) then no di sk a c t i v i t y occurs . \ t e x t t t {sync ()}
16 merges changes performed concurrently by other processes . Local changes
17 have p r i o r i t y , though .
18

19 To ensure that we have the l a t e s t values from disk , ca l l
20 \ t e x t t t { reparseConfiguration ()} which c a l l s \ t e x t t t {sync ()} and then
21 reloads the data from disk .
22

23 To prevent the config object from saving already−made modif ications to
24 disk , ca l l \ t e x t t t {markAsClean () } . A par t icu lar use case fo r t h i s i s
25 r o l l i n g back the configuration to the on−di sk state by cal l ing
26 \ t e x t t t {markAsClean ()} followed by \ t e x t t t { reparseConfiguration () } .
27

28 L i s t i n g a l l groups in a configuration object i s as simple as cal l ing
29 \ t e x t t t {groupLis t ()} as in t h i s code snippet :
30

31 \begin{ l s t l i s t i n g }
32 KSharedConfig : : P t r config = KSharedConfig : : openConfig () ;
33

34 foreach (const QStr ing& group , config−>groupLis t ()) {
35 qDebug() << ”next group : ” << group ;
36 }

4.4. KSHAREDCONFIG 13

4.4 KSharedConfig

The KSharedConfig class is a reference counted pointer to a KConfig. It thus provides
a way to reference the same configuration object from multiple places in your application
without the extra overhead of separate objects or concerns about synchronizing writes
to disk even if the configuration object is updated from multiple code paths.

Accessing a KSharedConfig object is as easy as this:

1 KSharedConfig : : P t r config = KSharedConfig : : openConfig(” ksomefi lerc ”) ;

openConfig() take the same parameters as KConfig’s constructors do, allowing one
to define which configuration file to open, flags to control merging and non-config re-
sources.

KSharedConfig is generally recommended over using KConfig itself.

4.5 KConfigGroup

Now that we have a configuration object, the next step is to actually use it. First define
which group of key/value pairs we wish to access in the object. We do this by creating a
KConfigGroup object:

1 KConfig config ;
2 KConfigGroup generalGroup (&config , ”General”) ;
3 KConfigGroup colorsGroup = config . group(” Colors ”) ; // or a b i t d i f f e r e n t l y

You can pass KConfig or KSharedConfig objects to KConfigGroup.

Config groups can be nested as well:

1 KConfigGroup subGroup1(&generalGroup , ”LessGeneral”) ;
2 KConfigGroup subGroup2 = colorsGroup . group(” Dialogs ”) ;

4.6 Reading Entries

With a KConfigGroup object in hand reading entries is now quite straight forward:

1 QString accountName = generalGroup . readEntry (”Account” ,
2 QString ()) ;
3 QColor color = colorsGroup . readEntry (”background” ,
4 Qt : : white) ;
5 Q S t r i n g L i s t l i s t = generalGroup . readEntry (” L i s t ” ,
6 Q S t r i n g L i s t ()) ;
7 QString path = generalGroup . readPathEntry (”SaveTo” ,
8 defaultPath) ;

In the example above, one can mix reads from different KConfigGroup objects created
on the same KConfig object. The read methods take the key, which is case sensitive,

14 CHAPTER 4. INTRODUCTION TO KCONFIG

as the first argument and the default value as the second argument. This argument
controls what kind of data, e.g. a color in line 74 above, is to be expected as well as
the type of object returned. The returned object is wrapped in a QVariant to make this
magic happen.

If no such key currently exists in the configuration object, the default value is returned
instead. If there is a localized (e.g.translated into another language) entry for the key
that matches the current locale, that is returned.

4.7 Writing Entries

Setting new values is similarly straightforward:

1 generalGroup . wr i teEnt ry (”Account” , accountName) ;
2 generalGroup . wr i tePathEntry (”SaveTo” , savePath) ;
3 colorGroup . wr i teEnt ry (”background” , color) ;
4 generalGroup . config()−>sync () ;

Note the use of writePathEntry and how the type of object we use, such as QColor
on line 86, dictates how the data is serialized. Additionally, once done writing entries,
sync() must be called on the config object for it to be saved to disk. We can also simply
wait for the object to be destroyed, which triggers an automatic sync() if necessary.

4.8 KDesktopFile: A Special Case

When is a configuration file not a configuration file? When it is a desktop file. These
files, which are essentially configuration files, which are used to describe entries for
application menus, mimetypes, plugins and various services.

When accessing a .desktop file, one should instead use the KDesktopFile class which,
while a KConfig class offering all the capabilities described above, offers a set of methods
designed to make accessing standard attributes of these files consistent and reliable.

4.9 KConfig XT

There is a way to make certain use cases of KConfig easier, faster and more reliable:
KConfig XT. In particular, for main application or plugin configuration objects and when
syncing configuration dialogs and other interfaces with these values, KConfig XT can
help immensely. It also simultaneously documents the configuration options available,
which makes every sysadmin and system integrator that uses KDE software that much
more happy.

Read more about Using KConfig XT.

http://freedesktop.org/wiki/Specifications/desktop-entry-spec
https://techbase.kde.org/Development/Tutorials/Using_KConfig_XT

Chapter 5

Ki18n: Reaching a wider audience

A excellent way of reaching a wider audience with your software is by localizing it. The
KDE community provides the ki18n framework to do this by leveraging gettext under-
neath. While Qt provides tr, ki18n is much much more powerful than tr, and offers writ-
ing 3 broad categories of writing messages: General Messages, Specialized Messages,
Placeholder Substitution, while also providing functionality to include user interface
markers to provide better context to translators.

5.1 Writing Messages

Most messages can be internationalized with simple i18n* calls, which are described
in the “General Messages” section. A few messages may require treatment with ki18n*
calls, and when this is needed is described in the “Special Messages” section. Argument
substitution in messages is performed using the familiar Qt syntax %<number>, but
there may be some differences.

5.2 General Messages

General messages are wrapped with i18n* calls. These calls are immediate, which
means that they return the final localized text (including substituted arguments) as
a QString object, that can be passed to UI widgets.

The most frequent message type, a simple text without any arguments, is handled like
this:

QString msg = i18n("Just plain info.");

The message text may contain arbitrary Unicode characters, and the source file must be
UTF-8 encoded. Ki18n supports no other character encoding.

If there are some arguments to be substituted into the message, %<number> placehold-
ers are put into the text at desired positions, and arguments are listed after the string:

15

16 CHAPTER 5. KI18N: REACHING A WIDER AUDIENCE

QString msg = i18n("%1 has scored %2", playerName, score);

Arguments must be of a type for which an overloaded KLocalizedString::subs method
exists. Up to 9 arguments can be inserted in this fashion, due to the fact that i18n calls
are realized as overloaded templates. If more than 9 arguments are needed, which is
extremely rare, a ki18n* call must be used.

Sometimes a short message in English is ambiguous to translators, possibly leading to
a wrong translations. Ambiguity can be resolved by providing a context string along
the text, using the i18nc call. In it, the first argument is the context, which only the
translator will see, and the second argument is the text which the user will see:

QString msg = i18nc("player name - score", "%1 - %2", playerName, score);

In messages stating how many of some kind of objects there are, where the number of
objects is inserted at run time, it is necessary to differentiate between plural forms of the
text. In English there are only two forms, one for number 1 (singular) and another form
for any other number (plural). In other languages this might be more complicated (more
than two forms), or it might be simpler (same form for all numbers). This is handled
properly by using the i18np plural call:

QString msg = i18np("%1 image in album %2", "%1 images in album %2",
numImages, albumName);

The plural form is decided by the first integer-valued argument, which is numImages
in this example. In rare cases when there are two or more integer arguments, they
should be ordered carefully. It is also allowed to omit the plural-deciding placeholder,
for example:

QString msg = i18np("One image in album %2", "%1 images in album %2",
numImages, albumName);

or even:

QString msg = i18np("One image in album %2", "More images in album %2",
numImages, albumName);

If the code context is such that the number is always greater than 1, the plural call
must be used nevertheless. This is because in some languages there are different plural
forms for different classes of numbers; in particular, the singular form may be used for
numbers other than 1 (e.g. those ending in 1).

If a message needs both context and plural forms, this is provided by i18ncp call:

QString msg = i18ncp("file on a person", "1 file", "%1 files", numFiles);

5.3. SPECIALIZED MESSAGES 17

In the basic i18n call (no context, no plural) it is not allowed to put a literal string as the
first argument for substitution. In debug mode this will even trigger a static assertion,
resulting in compilation error. This serves to prevent misnamed calls: context or plural
frequently needs to be added at a later point to a basic call, and at that moment the
programmer may forget to update the call name from i18n to i18nc/p.

Furthermore, an empty string should never be wrapped with a basic i18n call (no
i18n("")), because in translation catalog the message with empty text has a special
meaning, and is not intended for client use. The behavior of i18n("") is undefined, and
there will be some warnings in debug mode.

5.3 Specialized Messages

There are some situations where i18n* calls are not sufficient, or are not convenient
enough. One obvious case is if more than 9 arguments need to be substituted. An-
other case is if it would be easier to substitute arguments later on, after the line with
the i18n call. For cases such as these, ki18n* calls can be used. These calls are
deferred, which means that they do not return the final translated text as QString,
but instead return a KLocalizedString instance which needs further treatment. Ar-
guments are then substituted one by one using KLocalizedString::subs methods,
and after all arguments have been substituted, the translation is finalized by one of
KLocalizedString::toString methods (which return QString). For example:

KLocalizedString ks;
case (reportSource) {

SRC_ENG: ks = ki18n("Engineering reports: %1"); break;
SRC_HEL: ks = ki18n("Helm reports: %1"); break;
SRC_SON: ks = ki18n("Sonar reports: %1"); break;
default: ks = ki18n("General report: %1");

}
QString msg = ks.subs(reportText).toString();

subs methods do not update the KLocalizedString instance on which they are in-
voked, but instead return a copy of it with one argument slot filled. This permits us to
use KLocalizedString instances as templates for constructing final texts, by supplying
different arguments.

Another use for deferred calls is when special formatting of arguments is needed, like re-
questing the field width or number of decimals. subs methods can take these formatting
parameters. In particular, arguments should not be formatted in a custom way, because
subs methods will also take care of proper localization (e.g. use either dot or comma as
decimal separator in numbers, etc):

// BAD (number not localized):
QString msg = i18n("Rounds: %1", myNumberFormat(n, 8));
// Good:
QString msg = ki18n("Rounds: %1").subs(n, 8).toString();

18 CHAPTER 5. KI18N: REACHING A WIDER AUDIENCE

Like with i18n, there are context, plural, and context-plural variants of ki18n:

ki18nc("No function", "None").toString();
ki18np("File found", "%1 files found").subs(n).toString();
ki18ncp("Personal file", "One file", "%1 files").subs(n).toString();

toString methods can be used to override the global locale. To override only the lan-
guage of the locale, toString can take a list of languages for which to look up transla-
tions (ordered by decreasing priority):

QStringList myLanguages;
...
QString msg = ki18n("Welcome").toString(myLanguages);

This section describes how to specify the translation domain, a canonical name for the
catalog file from which *i18n* calls will draw translations. But toString can always be
used to override the domain for a given call, by supplying a specific domain:

QString trName = ki18n("Georgia").toString("country-names");

Relevant here is the set of ki18nd* calls (ki18nd, ki18ndc, ki18ndp, ki18ndcp), which
can be used for the same purpose, but which are not intended to be used directly. Please
refer to this page to check when these calls should be made.

Dynamic Contexts Translators are provided with the capability to script translations,
such that the text changes based on arguments supplied at run time. For the most
part, this feature is transparent to the programmer. However, sometimes the pro-
grammer may help in this by providing a dynamic context to the message, through
KLocalizedString::inContext methods. Unlike the static context, the dynamic con-
text changes at run time; translators have the means to fetch it and use it to script the
translation properly. An example:

KLocalizedString ks = ki18nc("%1 is user name; may have "
"dynamic context gender=[male,female]",
"%1 went offline");

if (knownUsers.contains(user) && !knownUsers[user].gender.isEmpty()) {
ks = ks.inContext("gender", knownUsers[user].gender);

}
QString msg = ks.subs(user).toString();

Any number of dynamic contexts, with different keys, can be added like this. Normally
every message with a dynamic context should also have a static context, like in the
previous example, informing the translator of the available dynamic context keys and
possible values. Like subs methods, inContext does not modify the parent instance,
but returns a copy of it.

http://https://api.kde.org/frameworks/ki18n/html/index.html
http://https://api.kde.org/frameworks/ki18n/html/index.html

5.4. PLACEHOLDER SUBSTITUTION 19

5.4 Placeholder Substitution

Hopefully, most of the time %<number> placeholders are substituted in the way one
would intuitively expect them to be. Nevertheless, some details about substitution are
as follows.

Placeholders are substituted in one pass, so there is no need to worry about what will
happen if one of the substituted arguments contains a placeholder, and another argu-
ment is substituted after it.

All same-numbered placeholders are substituted with the same argument.

Placeholders directly index arguments: they should be numbered from 1 upwards, with-
out gaps in the sequence, until each argument is indexed. Otherwise, error marks will
be inserted into message at run time (when the code is compiled in debug mode), and
any invalid placeholder will be left unsubstituted. The exception is the plural-deciding
argument in plural calls, where it is allowed to drop its placeholder, in either the singular
or the plural text.

If none of the arguments supplied to a plural call is integer-valued, an error mark will
be inserted into the message at run time (when compiled in debug mode).

Integer arguments will be by default formatted as if they denote an amount, according
to locale rules (thousands separation, etc.) But sometimes an integer is a numerical
identifier (e.g. port number), and then it should be manually converted into QString
beforehand to avoid treatment as amount:

i18n("Listening on port %1.", QString::number(port));

User Interface Markers In the same way there exists a HIG (Human Interface Guide-
lines) document for the programmers to follow, translators should establish HIG-like
convention for their language concerning the forms of UI text. Therefore, for a proper
translation, the translator will need too know not only what does the message mean, but
also where it figures in the UI. E.g. is the message a button label, a menu title, a tooltip,
etc.

To this end a convention has been developed among KDE translators, which program-
mers can use to succinctly describe UI usage of messages. In this convention, the context
string starts with an UI marker of the form @<major>:<minor>, and may be followed
by any other usual context information, separated with a single space:

i18nc("@action:inmenu create new file", "New");

The major and minor component of the UI marker are not arbitrary, but are drawn from
a table which can be found here.

For much more detail, see the online version of this guide.

http://api.kde.org/frameworks-api/frameworks5-apidocs/ki18n/html/prg_guide.html#good_ctxt
 http://api.kde.org/frameworks-api/frameworks5-apidocs/ki18n/html/prg_guide.html

Chapter 6

KIdleTime: Detect and Handle
System Idling

KIdleTime is a helper framework to get reporting information on idle time of the system.
It is useful not only for finding out about the current idle time of the system, but also
for getting notified upon idle time events, such as custom timeouts or user activity. It
features:

• current idling time

• timeout notifications, to be emitted if the system idled for a specified time

• activity notifications, if the user resumes acting after an idling periode

6.1 Using Kidletime

For understanding how to use KIdleTime, we create a small testing application, called
KIdleTest. This application initially waits for the first user action and afterwards regis-
ters some timeout intervals, and acts whenever the system idles for such a time. The
KIdleTime framework provides a singleton KIdleTime, which provides us with all neces-
sary signals and information about the idling status of the system. For our example,
we start with connecting to the signals for user resuming from idling and for reaching
timeouts that we will set ourselves:

1 K Id leTes t : : K Id leTes t ()
2 {
3 // connect to id le events
4 connect(KIdleTime : : instance () , &KIdleTime : : resumingFromIdle ,
5 t h i s , &K Id leTes t : : resumeEvent) ;
6 connect(KIdleTime : : instance () , qOverload<i n t , in t>
7 (&KIdleTime : : timeoutReached) ,
8 t h i s , &K Id leTes t : : timeoutReached) ;
9

10 // r e g i s t e r to get informed fo r the very next user event
11 KIdleTime : : instance()−>catchNextResumeEvent () ;

20

6.1. USING KIDLETIME 21

12 p r i n t f (”Your id le time i s %d\n” , KIdleTime : : instance()−> idleTime ()) ;
13 p r i n t f (”Welcome ! ! Move your mouse or do something to s t a r t . . . \ n”) ;
14 }

We also tell KIdleTime to notify us the very next time when the user acts. Note that
this is actually only for the next time. If we were interested in further events, we had to
invoke ‘catchNextResumeEvent()‘ again. Next, in our event listener for the user resume
event, we add register a couple of idle intervals:

1 void K Id leTes t : : resumeEvent ()
2 {
3 KIdleTime : : instance()−> removeAllIdleTimeouts () ;
4

5 p r i n t f (”Great ! Now stay id le fo r 5 seconds to get a nice message .
6 From 10 seconds on, you can move your mouse to get back here .\n”) ;
7 p r i n t f (” I f you w i l l stay id le fo r too long , I w i l l s imulate your
8 a c t i v i t y af ter 25 seconds , and make everything s t a r t back\n”) ;
9

10 KIdleTime : : instance()−>addIdleTimeout (5000) ;
11 KIdleTime : : instance()−>addIdleTimeout (10000) ;
12 KIdleTime : : instance()−>addIdleTimeout (25000) ;
13 }

If any of these idle intervals is reached, our initially registered ‘timeoutReached(...)‘ slot
is invoked and we print out an appropriate message.

1 oid K Id leTes t : : timeoutReached(i n t id , i n t timeout)
2 {
3 Q UNUSED(id)
4

5 i f (timeout == 5000) {
6 p r i n t f (”5 seconds passed , stay s t i l l some more . . . \ n”) ;
7 } else i f (timeout == 10000) {
8 KIdleTime : : instance()−>catchNextResumeEvent () ;
9 p r i n t f (”Cool . You can move your mouse to s t a r t over\n”) ;

10 } else i f (timeout == 25000) {
11 p r i n t f (” Uff , you ’ re annoying me. Let ’ s s t a r t again .
12 I ’m simulat ing your a c t i v i t y now\n”) ;
13 KIdleTime : : instance()−> s imulateUserAct iv i ty () ;
14 } else {
15 qDebug() << ”OUCH” ;
16 }
17 }

From there on, depending on the reached idle interval, we go back to one of the former
steps.

Chapter 7

KItemModels

KItemModels is a set of classes built for or on top of Qt’s model view system. It contains
a collection of additional proxy models and other utilities to help make complex tasks
around models simpler. The following chapter will go through all of them one by one

7.1 KBreadcrumbSelectionModel

The KBreadcrumbSelectionModel is a selection model to ensure that the parents of
items in trees are selected when a given item is selected. KBreadcrumbSelectionModel
makes creating a breadcrumb navigation bar easy with this.

7.2 KCheckableProxyModel

The KCheckableProxyModel adds checkable capability to a QAbstractItemModel with-
out having to modify the model itself and implement the right parts of data, setData
and flags methods. The checkable proxy model also works nicely together with the
KSelectionProxyModel to show the items checked off.

7.3 KDescendantsProxyModel

KDescendantsProxyModel flattens a tree model into a list with the possibility to still
make it visually appear like a tree by indentation or by showing the parent’s

7.4 KLinkItemSelectionModel

KLinkItemSelectionModel makes it possible to share a selection between multiple
views that has different proxy models in between the root model and the view

22

http://qt-project.org/doc/qt-5/model-view-programming.html

7.5. KMODELINDEXPROXYMAPPER 23

7.5 KModelIndexProxyMapper

KModelIndexProxyMapper facilitates mapping between two different branches of proxy
models on top of the same base root model.

7.6 KRecursiveFilterProxyModel

Filtering a tree model where the child items are of interest, QSortFilterProxyModel is
not the right thing. QSortFilterProxyModel does not look at children if a parent is
filtered out. KRecursiveFilterProxyModel goes through the tree and includes a item
and all its parents.

7.7 KSelectionProxyModel

KSelectionProxyModel Convenience filtering model to just show the items that are
included by a QItemSelectionModel

Chapter 8

Sonnet: Spellchecking made easy

Sonnet is a useful framework provided by KDE for software developers who want to
solve the problem of spellchecking in text editors. It has a plugin based architechture
with support for HSpell, Enchant, ASpell and HUNSPELL plugins. It even supports
automated language detection, based on a combination of different algorithms.

8.1 Spellchecking in your QTextEdit

Sonnet can be easily integrated into your QTextEdit as follows:

1 QTextEdit * tex tEd i t = new QTextEdit ;
2 tex tEd i t −>setText (
3 QString : : fromLatin1 (” T h i s i s a sample buffer . Whih t h i s thingg w i l l ”
4 ”be checkin fo r misstakes . Whih , Enviroment , govermant . ”)) ;
5

6 Sonnet : : SpellCheckDecorator * i n s t a l l e r =
7 new Sonnet : : SpellCheckDecorator (tex tEd i t) ;
8 i n s t a l l e r −>h igh l ighter ()−>setCurrentLanguage (Q St r i n gL i t e ra l (”en US”)) ;

Sonnet::SpellCheckDecorator can also be extended in various ways to spell check text
that is formatted differently, for example in emails.

1 class MailSpellCheckDecorator : public Sonnet : : SpellCheckDecorator
2 {
3 public :
4 e x p l i c i t MailSpellCheckDecorator (QTextEdit * edit)
5 : Sonnet : : SpellCheckDecorator (edit)
6 {
7 }
8

9 protected :
10 bool
11 isSpellCheckingEnabledForBlock (const QStr ing &blockText) const overr ide
12 {
13 qDebug() << blockText ;
14 return ! blockText . s ta r t sW i th (QLatin1Char (’> ’)) ;

24

8.2. LANGUAGE DETECTION IN SONNET 25

15 }
16 } ;

So, you can use MailSpellCheckDecorator in exactly the same way as you would use
SpellCheckDecorator, but with the added functionality that MailSpellCheckDecorator
will ignore quoted parts of a email.

8.2 Language Detection in Sonnet

Sonnet can determine the difference between ˜75 languages for a given string. It is based
off a perl script origionaly written by Maciej Ceglowski called Languid. His script used
a two-part heuristic to determine language. First the text is checked for the scripts it
contains, next for each set of languages using those scripts a n-gram frequency model
of a given language is compared to a model of the text. The most similar language model
is assumed to be the language. If no language is found an empty string is returned.

Here you see a simple example of language detection using the GuessLanguage class
from Sonnet:

1 GuessLanguage languageGuesser ;
2 QString lang = languageGuesser . i d e n t i f y (”My awesome text ”) ;

8.3 GUI Widgets provided by Sonnet

Sonnet also provides some GUI widgets that can be used by Qt applications to configure
settings in Sonnet; for example Qt applications can use the DictionaryComboBox class
from Sonnet to get a QComboBox that can configure the dictionary used by Sonnet.

1 void TestDialog : : check(const QStr ing &buffer)
2 {
3 Sonnet : : Dialog * dlg = new Sonnet : : Dialog (new BackgroundChecker(t h i s) , n u l l p t r) ;
4 connect(dlg , &Dialog : : spellCheckDone , t h i s , &TestDialog : : doneChecking) ;
5 dlg−>setBuf fe r (buffer) ;
6 dlg−>show () ;
7 }

The ConfigDialog class from Sonnet provides a more advanced configuration dialog to
configure settings such as whitelisting words, skipping run-together words as well as
enabling or disabling auto detection of the language.

Chapter 9

Concurrent programming using the
ThreadWeaver framework

9.1 HelW olorld!

Concurrent programming means creating applications that perform multiple operations
at the same time. A common problem is that the user sees the application pause. A
typical requirement is that an operation which may take an arbitrary amount of time
because it is, for example, performing disk I/O, is scheduled for execution but imme-
diately taken off the main thread of the application (the one that starts main()). To
illustrate how this problem would be solved and to jump right into using ThreadWeaver,
let’s simulate this problem by printing Hello World! as the asynchronous payload.

1 #include <QtCore>
2 #include <ThreadWeaver/ThreadWeaver>
3

4 i n t main(i n t argc , char ** argv)
5 {
6 QCoreApplication app(argc , argv) ;
7

8 using namespace ThreadWeaver ;
9 stream () << make job ([] () {

10 qDebug() << ” Hel lo World ! ” ;
11 }) ;
12 }

This short but complete program written in C++11 outputs the common greeting to the
command line. 1 It does so, however, from a worker thread managed by the global
ThreadWeaver queue. The header file ThreadWeaver/ThreadWeaver.h included in line
2 contains the essential declarations needed to use the most common ThreadWeaver
operations. The components used in this example are the global queue, a job and a
queueing mechanism. The global queue is a singleton instance of the ThreadWeaver
thread pool that is instantiated when it is first accessed after the application starts.

1The examples are part of the ThreadWeaver source code and can be found at
https://invent.kde.org/frameworks/threadweaver/-/tree/master/examples.

26

9.1. HELW OLORLD! 27

A job represents “something” that should be executed asynchronously. In this case,
the thing to execute is a C++ lambda function that prints the welcome message. The
queueing mechanism used here is a queue stream, an API inspired by the iostream
family of classes. ThreadWeaver builds on top of Qt, and similar to most Qt applications
requires a QCoreApplication (or one of it’s descendents) to exist throughout the lifetime
of the application. Up to line 7, the program looks like any other Qt application.

To have the job lambda function called by one of the worker threads, a job is created
that wraps it using the make job() function. It is then handed to the queue stream. The
queue stream will submit the jobs for execution when the queuing command is com-
pleted that is at the closing semicolon. Once the job is queued, one of the worker threads
will automatically pick it up from the queue and execute it. ThreadWeaver::Job is the
unit of execution handled by ThreadWeaver queues. Jobs are simple runnable types
that perform one task, defined in their run() method. Some jobs wrap a lambda func-
tion as in this example or decorate other jobs. However implementing custom, reusable
job classes is only a matter of writing a class that inherits ThreadWeaver::Job and
re-implement its run method. The job that was created by make job() in this exam-
ple wraps the specified lambda function, and executes it when it is itself executed by a
worker thread.

The program does not specify where the job should be executed, and not even when
exactly. In a scenario where there would be many jobs waiting in the queue, execution of
the new job would not be immediate. Which worker thread will be assigned the job is also
undefined. The programmer gives up a bit of control over the details of execution, and in
turns benefits from the automatic distribution of jobs amongst the available processors
by the worker threads in the queue. Every program that links the ThreadWeaver library
has access to a global queue for the execution of jobs. If no queue is specified when
enqueueing a job, the global one will be used by default. Workers threads are allocated
when needed by the queue. If the global pool is never accessed by an application, it will
never be instantiated.

An application performing tasks in background threads should never exit while any of
these operations is still in progress. In the case of ThreadWeaver, this means all jobs in
the queue need to be either completed or dequeued and all worker threads idle before the
application may exit. The global pool is in fact a QObject child of the QCoreApplication
object instantiated in line 7. It will be deleted by the destructor of QCoreApplication.
When it is destroyed, it will wait until all queued up jobs have completed. The program
will thus wait in line 8 until the job has finished printing “Hello World!”, and will then
exit. The job was enqueued as a shared pointer, so memory management is taken care
of. While this example was very much simplified, the described functionality already has
many practical applications. For example, the many operations real-life applications
need to perform at startup, like loading translations, icon resources et cetera, can be
removed from the criticial path this way. In this case the operations usually need to be
performed in a certain order and then handed over to the main thread. Solutions for
that will be discussed in a later chapter.

28CHAPTER 9. CONCURRENT PROGRAMMING USING THE THREADWEAVER FRAMEWORK

9.2 Adding ThreadWeaver to a project - an introduction to the
Frameworks 5 build system

Two standard questions occur to programmers when learning a new technology or toolkit
as a programmer - how do I use it, and how do I add this module to and deploy it with
my project. The answer to the second question requires at some knowledge about the
build system used, and will be covered in this chapter. While it will use ThreadWeaver
to explain the details, the workflow presented is generic and could be similarly applied
when adding other KDE frameworks.

KDE frameworks use the CMake build system.2 In essence, CMake is a generator of
native project build instructions (Makefiles, for example) based on a project build de-
scription, the CMakeLists.txt file. CMake is common especially for C++ projects, and
is used to build all of KDE software. The basic concepts are powerful, expressive and
relatively easy to use. In addition, CMake is portable and generates build instructions
for all relevant target platforms including not just Linux, but also OSX and Windows.
This portability supports the goal of KDE and its frameworks to be available from a sin-
gle source on as many platforms as possible. In the following steps, the essential bits of
the complete CMakeLists.txt file for ThreadWeaver’s HelloWorld example are going to be
explained. The real world relevance of this use case is to build an application that uses
and links a KDE framework, in this case ThreadWeaver.

1 cmake minimum required (VERSION 3.0)
2 find package (ECM 1.1 .0 REQUIRED NO MODULE)

The first two lines define a minimum CMake version and make sure the extra CMake
modules (ECM) used by the KDE project are detected by CMake. These two lines are not
required, but it is a good idea to have them. Specifying a minimum CMake version at
the beginning of the file prevents cryptic, hard to understand errors that may be caused
by an older installed CMake version trying to parse the file any further. Similarly, ECM
would be automatically detected if it is installed, but by explicitly looking for it, a clear
error message is triggered if it cannot be found. However these two lines are just in
preparation for the next bits that are more specific to the projects.

1 find package (KF5ThreadWeaver ${KF VERSION} REQUIRED)

The find package statement detects the ThreadWeaver include files and libraries and
provides them so that they can later be used to build and link concrete targets, like
libraries or applications. Because the find package statement marks the framework as
required, the statement will fail if ThreadWeaver cannot be detected by CMake. In this
case, make sure the framework is properly installed, including the development package
that usually contains the header files. On failure to detect ThreadWeaver, CMake will
abort and not generate any makefiles.

1 # Define the project name
2 project (HelloWorld)
3 # Add the HelloWorld executable and l i n k the ThreadWeaver
4 # l i b r a r y to i t

2https://www.cmake.org

9.2. ADDING THREADWEAVER TO A PROJECT - AN INTRODUCTION TO THE FRAMEWORKS 5 BUILD SYSTEM29

5 add executable (ThreadWeaver HelloWorld HelloWorld .cpp)
6 t a r g e t l i n k l i b r a r i e s (ThreadWeaver HelloWorld KF5 : : ThreadWeaver)

The last snippet defines the actual meat of the project. It specifies the project name to
be HelloWorld, and adds an executable named ThreadWeaver HelloWorld that is built
from one source file, HelloWorld.cpp. The last line uses the target link libraries
command to specify that to build the ThreadWeaver HelloWorld executable, it should
link the ThreadWeaver libraries. The libraries are specified using a scoped named vari-
able, KF5::ThreadWeaver. This variable has been defined by the earlier find package
command. Every KDE framework defines a named variable like that that should be used
to link the respective libraries.

Chapter 10

Creating a new application

You have an awesome idea. The idea which will change the world, which will bring
everybody a bright future. This idea needs to be implemented now, so you sit down and
do it. Your toolkit of choice is Qt, what else?

There are many ways to start a new Qt application. One of them is using the tool
kapptemplate, which generates a fresh skeleton of an application you can then fill with
all the goodness your idea brings.

10.1 Starting a new application from a template

So you run kapptemplate and start the wizard. First you have to choose which template
to use. We use the “Minimal C++ KDE Frameworks” one. This will get us started and
open up a bunch of nice opportunities coming from KDE Frameworks. More about that
later.

30

10.1. STARTING A NEW APPLICATION FROM A TEMPLATE 31

We enter the name of our new application “BrightFuture” and continue the wizard.

Now we just need to enter some basic data about the application, the initial version
number, author, and where the code should be stored. This will usually already be
neatly pre-filled.

Now continue and finish the wizard and you have the initial code ready for your new
application.

Before you compile the code, we highly recommend to first create a build folder that
will be separated from your source folder. That’s because when you start compiling
the application, the build system will create lots of files during the compilation and the
folder with your source code could quickly become overpopulated with files. This way
you’ll have a clean separation between source code and the compiled binary files.

Go to the code folder, create a “build” folder and cd into it

mkdir build
cd build

Now compile it with

cmake ..
make

32 CHAPTER 10. CREATING A NEW APPLICATION

Run it with

src/brightfuture

and there you are. Greetings from KDE to your new application.

10.2 Walking through the skeleton

Let’s have a look at what was generated there and walk through the initial code.

10.2.1 main.cpp

The starting point is main.cpp. That’s where the application is set up. The first line of
the main function creates an application object:

1 QApplication application (argc , argv) ;

This is straightforward, but there is one important thing to notice, especially if you have
not seen KDE applications before. We use a QApplication; that’s with a Q not a K. So
no special setup is needed anymore for writing applications with KDE Frameworks. It’s
just a Qt application, and you can later add whatever you need whenever you want.

The scope of your idea of course doesn’t stop at language barriers, so the template con-
veniently sets up internationalization of the texts in your application under a dedicated
translation domain:

1 KLocal izedStr ing : : setApplicationDomain (” br ight future ”) ;

The next step is to set up some basic information about the application, so that this can
be shown to users and wherever else this is useful:

1 KAboutData aboutData(QS t r i ng L i te ra l (” br ight future ”) ,
2 i18n (”Simple App”) ,
3 QSt r i ngL i te ra l (” 0.1 ”) ,
4 18n(”A Simple Application wr i t ten with KDE Frameworks”) ,
5 KAboutLicense : : GPL,
6 i18n (” (c) 20013−2014, Cornel ius Schumacher <schumacher@kde. org>”)) ;
7

8 aboutData . addAuthor (i18n (” Cornel ius Schumacher”) , i18n (”Author”) ,
9 QSt r i ngL i te r a l (”schumacher@kde. org”)) ; fo r

10 aboutData . setProgramIconName(” br ight futu re ”) ;

This makes use of the data you entered in the wizard before. Note that it uses the i18n
function to translate all strings visible to users. This comes from the KDE Framework
k18n.

The KAboutData class comes from the KDE Framework for kcoreaddons.

As the next step, the command line is parsed, so users can get help about the use of the
program from the command line, information about author and version and whatever
options BrightFuture will need:

https://invent.kde.org/documentation/kf5book/-/blob/master/new-app/brightfuture/src/main.cpp

10.2. WALKING THROUGH THE SKELETON 33

1 QCommandLineParser parser ;
2 parser . addHelpOption () ;
3 parser . addVersionOption () ;
4 aboutData . setupCommandLine(&parser) ;
5 parser . process (application) ;
6 aboutData . processCommandLine(&parser)

Finally we show the application’s main window and give control to the user:

1 Br ightFuture *appwindow = new Br ightFuture ;
2 appwindow−>show () ;
3 return application . exec () ;

10.2.2 BrightFuture

The main window is implemented in the class BrightFuture. Let’s have a look.

The header brightfuture.h is minimal:

1 /* *
2 * T h i s c lass serves as the main window for Br ightFuture . I t handles the
3 * menus, toolbars and status bars .
4 *
5 * @short Main window class
6 * @author Your Name <mail@example .com>
7 * @version 0.1
8 */
9 class Br ightFuture : public QMainWindow

10 {
11 Q OBJECT
12 public :
13 /* *
14 * Default Constructor
15 */
16 Br ightFuture () ;
17

18 /* *
19 * Default Destructor
20 */
21 v i r t u a l ˜ Br ightFuture () ;
22

23 private :
24 // t h i s i s the name of the root widget ins ide our U i f i l e
25 // you can rename i t in designer and then change i t here
26 Ui : : mainWidget m ui ;
27 } ;

It defines a window inherited from QMainWindow and adds a main widget Ui::mainWidget
m ui;, which is defined in the Qt Designer file brightfuture.ui.

brightfuture/src/brightfuture.h
https://invent.kde.org/documentation/kf5book/-/blob/master/new-app/brightfuture/src/brightfuture.ui

34 CHAPTER 10. CREATING A NEW APPLICATION

The implementation brightfuture.cpp brings the application to life in its constructor:

1 QWidget *widget = new QWidget(t h i s) ;
2 setCentralWidget (widget) ;
3 m ui . setupUi (widget) ;

This is standard Qt code. We will add a little bit more here later.

10.3 Plotting the future

We know the future is bright, so let our application plot it. KDE Frameworks comes with
the framework KPlotting, which is able to do simple plots. See the KPlotting API for
more information. We will use it to plot a set of data points in our main window.

To make use of the framework, declare that you are using it in your main CMakeLists.txt
file. Simply add Plotting to the find package statement for the KDE Frameworks
libraries (it uses KF5 as a shortcut):

find_package(KF5 REQUIRED COMPONENTS
CoreAddons
I18n
Plotting

)

You also have to link to the library in the CMakeLists.txt file in the src directory where
the source files of the application are defined, and how they are linked to the required
libraries. Add KF5::Plotting to the target link libraries statement there:

target_link_libraries(brightfuture
Qt5::Widgets
KF5::CoreAddons
KF5::I18n
KF5::Plotting

)

Now we can write the actual code to plot the future. We add that to the constructor of
the main window and replace the code, which was generated by the template generator
there:

1 KPlotWidget * plot = new KPlotWidget (t h i s) ;
2 setCentralWidget (plot) ;
3

4 plot−>s e t L i m i t s (−1 , 11 , −1 , 40) ;
5

6 KPlotObject *po =
7 new KPlotObject (Qt : : white , KPlotObject : : Bars , 2) ;
8 po−>setBarBrush (QBrush (Qt : : green , Qt : : Dense4Pattern)) ;
9

https://invent.kde.org/documentation/kf5book/-/blob/master/new-app/brightfuture/src/brightfuture.cpp
https://api.kde.org/frameworks/kplotting/html/index.html
brightfuture2/CmakeLists.txt
https://invent.kde.org/documentation/kf5book/-/blob/master/new-app/brightfuture/src/CMakeLists.txt

10.4. CONFIGURING THE COLOR 35

10 f loat y = 1;
11 fo r (f loat x = 1; x <= 10; x += 1) {
12 po−>addPoint (x , y) ;
13 y *= 1 . 5 ;
14 }
15

16 plot−>addPlotObject (po) ;
17

18 plot−>update () ;

That’s all. Here is the plot of the future:

10.4 Configuring the color

The future is bright, but everybody has a different preference for its color. So let’s make
the color of the future configurable.

KDE Frameworks offers KConfig, which is a framework for reading and writing config-
uration data. We will make use of it in our application to save the color of the plot we
created in the previous section.

10.4.1 Enabling KConfig

As the first step we need to add the framework to the main CMakeList.txt, so that in-
cludes and libraries become available:

1 find package (KF5 REQUIRED COMPONENTS
2 CoreAddons
3 I18n
4 P lo t t ing

https://invent.kde.org/documentation/kf5book/-/blob/master/new-app/brightfuture3/CMakeLists.txt

36 CHAPTER 10. CREATING A NEW APPLICATION

5 Config
6)

Then we need to link to the ConfigGui library in the CmakeList.txt file in the src direc-
tory to be able to access the functions KConfig provides:

1 find package (KF5 REQUIRED COMPONENTS
2 CoreAddons
3 I18n
4 P lo t t ing
5 Config
6)

KConfig provides two libraries: KConfigCore and KConfigGui. The core library con-
tains the basic functionality. The GUI library adds support for data type used in GUIs.
We want to store a color, which is a GUI type, that is why we link to KConfigGui.

10.4.2 Adding the capability to plot in different colors

To be able to make the color configurable, brightfuture first needs to be able to plot in
different colors. We simply do that by adding three buttons, which each call a separate
slot setting the colors to green, golden, or pink.

This code is straight-forward Qt code. It is in brightfuture.h and brightfuture.cpp. Have
a look there to see the details. We will focus on the configuration code now.

10.4.3 Writing the configuration

We need two classes to deal with configuration data, KSharedConfig and KConfigGroup,
so we add the include statements for them at the top of the brightfuture.cpp file:

https://invent.kde.org/documentation/kf5book/-/blob/master/new-app/brightfuture3/src/CMakeLists.txt
https://invent.kde.org/documentation/kf5book/-/blob/master/new-app/brightfuture3/src/brightfuture.h
https://invent.kde.org/documentation/kf5book/-/blob/master/new-app/brightfuture3/src/brightfuture.cpp
https://invent.kde.org/documentation/kf5book/-/blob/master/new-app/brightfuture3/src/brightfuture.cpp

10.4. CONFIGURING THE COLOR 37

1 #include <KSharedConfig>
2 #include <KConfigGroup>

KSharedConfig represents a configuration. It is the main class, which provides access
to configuration groups and takes care of storing, reading, and writing configuration
data.

KConfigGroup represents a named configuration group. This is the object you need to
actually read and write configuration data. It takes a name, which is used to group the
configuration in the configuration files.

Now that we have the classes available, we just need to make use of them:

1 void Br ightFuture : : plotGoldenFuture ()
2 {
3 KConfigGroup config (KSharedConfig : : openConfig () , ” colors ”) ;
4 config . wr i teEnt ry (” plot ” , QColor (”gold”)) ;
5 plotFuture () ;
6 } KAboutData aboutData(QS t r i ng L i te ra l (” br ight future ”) , i18n (”Simple App”) , QS t r i ngL i te ra l (” 0.1 ”) , i18n (”A Simple Application wr i t ten with KDE ” ”Frameworks”) , KAboutLicense : : GPL, i18n (” (c) 2013−2014, ” ” Cornel ius Schumacher <schumacher@kde. org>”)) ; aboutData . addAuthor (i18n (” Cornel ius Schumacher”) , i18n (”Author”) , QS t r i ng L i te r a l (”schumacher@kde. org”)) ; aboutData . setProgramIconName(” br ight future ”) ;

This is the function which is called when pressing one of the color buttons. It sets the
color and then calls the function doing the actual plot. The magic happens in the first
two lines of the function.

The first line creates the KConfigGroup object, which is used to write the configura-
tion. It uses the application-wide shared configuration object, which is retrieved by the
KSharedConfig::openConfig() call. The second parameter is the name of the group,
where the configuration should be stored.

The second line writes the configuration value we want to store. We simply call writeEntry
on the group object, give it a name of our choice for the configuration option, and pass
the color as the object to store. KConfig does the magic to figure out how to deal with a
QColor object in the configuration file behind the scenes.

By default configuration is stored in an INI-style text file in the directory
˜/.config/brightfuturerc:

[colors]
plot=255,215,0

The name of the configuration file is derived from the application name defined by
KAboutData in the main.cpp file:

1 KAboutData aboutData(QS t r i ng L i te r a l (” br ight future ”) ,
2 i18n (”Simple App”) ,
3 QSt r i ngL i te ra l (” 0.1 ”) ,
4 i18n (”A Simple Application wr i t ten with KDE ”
5 ”Frameworks”) ,
6 KAboutLicense : : GPL,
7 i18n (” (c) 2013−2014, ”
8 ” Cornel ius Schumacher <schumacher@kde. org>”)) ;
9

https://invent.kde.org/documentation/kf5book/-/blob/master/new-app/brightfuture3/src/main.cpp

38 CHAPTER 10. CREATING A NEW APPLICATION

10 aboutData . addAuthor (i18n (” Cornel ius Schumacher”) ,
11 i18n (”Author”) ,
12 QSt r i ngL i te ra l (”schumacher@kde. org”)) ;
13 aboutData . setProgramIconName(” br ight futu re ”) ;

10.4.4 Reading the configuration

Now the final step is to read the configuration on startup of the application, so that the
choice of the user is remembered.

This is done in the plotFuture function:

1 void Br ightFuture : : plotFuture ()
2 {
3 KConfigGroup config (KSharedConfig : : openConfig () , ” colors ”) ;
4 QColor color = config . readEntry (” plot ” , QColor (”green”)) ;
5 m plot object−>setBarBrush (QBrush (color , Qt : : So l idPattern)) ;
6 m plot−>update () ;
7 }

We get the “color” group from the configuration object for the application again and then
call readEntry to read the value we wrote before. The second parameter QColor("green")
is the default value which is used when no value can be found in the configuration file.

We can now start the application, click the “golden” button to change the color of the
plot to gold, and the next time we start the application the plot is rendered golden at
once.

That’s all we need. We have made the color of the future configurable and made it golden.

	Introduction to KF5
	What are Frameworks?
	History

	KArchive
	Show me the code
	Sending compressed data over networks

	Kauth
	Introduction to Authorization
	What is KAuth
	Concepts
	Phases breakdown
	Creating Actions with KAuth
	The Domain field
	CMake macros and file format

	Introduction to KConfig
	Design Essentials
	The KConfig Class
	Special Configuration Objects
	KSharedConfig
	KConfigGroup
	Reading Entries
	Writing Entries
	KDesktopFile: A Special Case
	KConfig XT

	Ki18n: Reaching a wider audience
	Writing Messages
	General Messages
	Specialized Messages
	Placeholder Substitution

	KIdleTime: Detect and Handle System Idling
	Using Kidletime

	KItemModels
	KBreadcrumbSelectionModel
	KCheckableProxyModel
	KDescendantsProxyModel
	KLinkItemSelectionModel
	KModelIndexProxyMapper
	KRecursiveFilterProxyModel
	KSelectionProxyModel

	Sonnet: Spellchecking made easy
	Spellchecking in your QTextEdit
	Language Detection in Sonnet
	GUI Widgets provided by Sonnet

	Concurrent programming using the ThreadWeaver framework
	HelW olorld!
	Adding ThreadWeaver to a project - an introduction to the Frameworks 5 build system

	Creating a new application
	Starting a new application from a template
	Walking through the skeleton
	main.cpp
	BrightFuture

	Plotting the future
	Configuring the color
	Enabling KConfig
	Adding the capability to plot in different colors
	Writing the configuration
	Reading the configuration

